A validated model of oxygen uptake and circulatory dynamic interactions at exercise onset in humans.
نویسندگان
چکیده
At the onset of muscular exercise, the kinetics of pulmonary O2 uptake (Vo2P) reflect the integrated dynamic responses of the ventilatory, circulatory, and neuromuscular systems for O2 transport and utilization. Muscle O2 uptake (Vo2m) kinetics, however, are dissociated from Vo2P kinetics by intervening O2 capacitances and the dynamics of the circulation and ventilation. We developed a multicompartment computational model (MCM) to investigate these dynamic interactions and optimized and validated the MCM using previously published, simultaneously measured Vo2m, alveolar O2 uptake (Vo2A), and muscle blood flow (Qm) in healthy young men during cycle ergometry. The model was used to show that 1) the kinetics of Vo2A during exercise transients are very sensitive to preexercise blood flow distribution and the absolute value of Qm, 2) a low preexercise Qm exaggerates the magnitude of the transient fall in venous O2 concentration for any given Vo2m kinetics, necessitating a tighter coupling of Qm/Vo2m (or a reduction in the available work rate range) during the exercise transient to avoid limits to O2 extraction, and 3) information regarding exercise-related alterations in O2 uptake and blood flow in nonexercising tissues and their effects on mixed venous O2 concentration is required to accurately predict Vo2A kinetics from knowledge of Vo2m and Qm dynamics. Importantly, these data clearly demonstrate that Vo2A kinetics are nonexponential, nonlinear distortions of Vo2m kinetics that can be explained in a MCM by interactions among circulatory and cellular respiratory control processes before and during exercise.
منابع مشابه
Counterpoint: maximal oxygen uptake is not limited by a central nervous system governor.
signals are monitored to ensure that exercise always terminates before the loss of homeostasis in any bodily system as was the case in all these new studies (4 – 6, 10). This complex model (24, 26) contrasts to the reductionist model of Hill et al. (11), which holds that a single variable, the development of skeletal muscle anaerobiosis and " lactic acidosis, " alone causes the termination of m...
متن کاملMuscle oxygen kinetics at onset of intense dynamic exercise in humans.
The present study examined the onset and the rate of rise of muscle oxidation during intense exercise in humans and whether oxygen availability limits muscle oxygen uptake in the initial phase of intense exercise. Six subjects performed 3 min of intense one-legged knee-extensor exercise [65.3 +/- 3.7 (means +/- SE) W]. The femoral arteriovenous blood mean transit time (MTT) and time from femora...
متن کاملHuman femoral artery diameter in relation to knee extensor muscle mass, peak blood flow, and oxygen uptake.
It is not known whether the diameter of peripheral conduit arteries may impose a limitation on muscle blood flow and oxygen uptake at peak effort in humans, and it is not clear whether these arteries are dimensioned in relation to the tissue volume they supply or, rather, to the type and intensity of muscular activity. In this study, eight humans, with a peak pulmonary oxygen uptake of 3.90 +/-...
متن کاملOxygen delivery by blood determines the maximal VO2 and work rate during whole body exercise in humans: in silico studies.
It has been proposed by Saltin (J Exp Biol 115: 345-354, 1985) that oxygen delivery by blood is limiting for maximal work and oxygen consumption in humans during whole body exercise but not during single-muscle exercise. To test this prediction quantitatively, we developed a static (steady-state) computer model of oxygen transport to and within human skeletal muscle during single-muscle (quadri...
متن کاملSkeletal muscle blood flow and oxygen uptake at rest and during exercise in humans: a pet study with nitric oxide and cyclooxygenase inhibition.
The aim of the present study was to determine the effect of nitric oxide and prostanoids on microcirculation and oxygen uptake, specifically in the active skeletal muscle by use of positron emission tomography (PET). Healthy males performed three 5-min bouts of light knee-extensor exercise. Skeletal muscle blood flow and oxygen uptake were measured at rest and during the exercise using PET with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 115 5 شماره
صفحات -
تاریخ انتشار 2013